# APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

#### Today:

- Introduction to digital image
- Read and show images
- Image arithmetic



Fall 2015

### Digital Image and Its Acquisition



Y.-F. Kuo

**Types of Digital Image** 



Y.-F. Kuo

- Binary: Each pixel is just black or white
- Grayscale: Each pixel is a shade of gray, normally from 0 (black) to 255 (white)
- **True color** or **RGB**: Each pixel has a particular color described by the amount of red, green and blue in it

### **Typical RGB Image**



# Why RGB?

 Three kinds of light-sensitive photoreceptor cells in the human eye (i.e., cone cells) respond most to red, green and blue



### **Elements of Images**



### **Binary Image**



8

### Greyscale Image

The second second second

|   |           | 1 CALIFICA | /   |     |     |     |     |     | 1   |
|---|-----------|------------|-----|-----|-----|-----|-----|-----|-----|
|   | $-\gamma$ | F          | 230 | 229 | 232 | 234 | 235 | 232 | 148 |
|   |           | 1          | 237 | 236 | 236 | 234 | 233 | 234 | 152 |
|   |           |            | 255 | 255 | 255 | 251 | 230 | 236 | 161 |
|   |           | Y          | 99  | 90  | 67  | 37  | 94  | 247 | 130 |
|   |           |            | 222 | 152 | 255 | 129 | 129 | 246 | 132 |
|   |           |            | 154 | 199 | 255 | 150 | 189 | 241 | 147 |
|   |           |            | 216 | 132 | 162 | 163 | 170 | 239 | 122 |
|   |           |            |     |     |     |     |     |     |     |
|   |           | 1          |     |     |     |     |     |     |     |
| - |           |            |     |     |     |     |     |     |     |
|   | All Share | E IFROM    |     |     |     |     |     |     |     |

### **Color Image**



| 49 | 55 | 56 | 57 | 52 | 53 |
|----|----|----|----|----|----|
| 58 | 60 | 60 | 58 | 55 | 57 |
| 58 | 58 | 54 | 53 | 55 | 56 |
| 83 | 78 | 72 | 69 | 68 | 69 |
| 88 | 91 | 91 | 84 | 83 | 82 |
| 69 | 76 | 83 | 78 | 76 | 75 |
| 61 | 69 | 73 | 78 | 76 | 76 |

| 64  | 76  | 82  | 79  | 78  | 78  |
|-----|-----|-----|-----|-----|-----|
| 93  | 93  | 91  | 91  | 86  | 86  |
| 88  | 82  | 88  | 90  | 88  | 89  |
| 125 | 119 | 113 | 108 | 111 | 110 |
| 137 | 136 | 132 | 128 | 126 | 120 |
| 105 | 108 | 114 | 114 | 118 | 113 |
| 96  | 103 | 112 | 108 | 111 | 107 |

| 66  | 80  | 77  | 80  | 87  | 77  |
|-----|-----|-----|-----|-----|-----|
| 81  | 93  | 96  | 99  | 86  | 85  |
| 83  | 83  | 91  | 94  | 92  | 88  |
| 135 | 128 | 126 | 112 | 107 | 106 |
| 141 | 129 | 129 | 117 | 115 | 101 |
| 95  | 99  | 109 | 108 | 112 | 109 |
| 84  | 93  | 107 | 101 | 105 | 102 |

9

Red

Green

Blue

## Read and Show An Image

Y.-F. Kuo

- Read an image: imread()
- Show an image: imshow()
- Example:

```
clear, close all
I = imread('pout.tif'); %read
imshow(I); %show
```



### Image Variable in Workspace

| whos |         |       |       |
|------|---------|-------|-------|
| Name | Size    | Bytes | Class |
| I    | 291x240 | 69840 | uint8 |



| Filename        | C:\Program Files\MATLAB\R2014a\toolbox\images\imdata\pout.tif |
|-----------------|---------------------------------------------------------------|
| FileModDate     | 25-九月-2013 16:12:06                                           |
| FileSize        | 69004                                                         |
| Format          | tif                                                           |
| Width           | 240                                                           |
| Height          | 291                                                           |
| BitDepth        | 8                                                             |
| ColorType       | grayscale                                                     |
| FormatSignature | [73 73 42 0]                                                  |
| ByteOrder       | little-endian                                                 |
| BitsPerSample   | 8                                                             |
| SamplesPerPixel | 1                                                             |
| RowsPerStrip    | 34                                                            |
| StripByteCounts | [1x9 double]                                                  |
| XResolution     | 72                                                            |
| YResolution     | 72                                                            |
| ResolutionUnit  | Inch                                                          |
| MaxSampleValue  | 255                                                           |
| MinSampleValue  | 0                                                             |

#### Image Viewer: imtool ('pout.tif')

Y.-F. Kuo

#### Get pixel information in image viewer

| •                         | Image Tool 1 - pou          | ıt.tif — 🗖 🗙           |          | Pix          | el Re        | gion           | Imag         | е Тоо | l 1) | _ [ | <b></b> > | <      |
|---------------------------|-----------------------------|------------------------|----------|--------------|--------------|----------------|--------------|-------|------|-----|-----------|--------|
| <u>File</u> <u>T</u> ools | <u>W</u> indow <u>H</u> elp |                        | <u> </u> | ile <u>E</u> | dit <u>V</u> | <u>V</u> indo\ | v <u>H</u> e | lp    |      |     |           | ĸ      |
| 🗋 🗟 🛈 O '                 | 💡 🗖 🖉 🔍 🔍 🖑ን 🐝 100          | %                      | Ē        | B 🔳 💈        | 2            |                |              |       |      |     |           |        |
|                           | - a                         |                        | Э        | 142          | 143          | 146            | 151          | 153   | 151  | 153 | 153       | 1      |
|                           | A STATIST                   |                        | 3        | 133          | 137          | 143            | 148          | 149   | 150  | 153 | 151       | 1      |
|                           |                             |                        | D        | 114          | 122          | 133            | 139          | 142   | 148  | 149 | 146       | 1-     |
|                           |                             |                        | 3        | 105          | 108          | 119            | 128          | 128   | 137  | 142 | 137       | 1      |
|                           |                             | 8                      | 1        | 101          | 103          | 109            | 113          | 114   | 121  | 127 | 132       | 1      |
|                           | SK ICH                      | 5                      |          |              |              |                |              |       |      |     |           | *<br>} |
| Pixel info: (120, 2       | 252) 146                    | Display range: [0 255] | P        | ixel info:   | (118, 14     | 43) 149        |              |       |      |     |           |        |
| 10 - By - Co              |                             |                        |          |              |              |                |              |       |      |     |           |        |

### Image Processing

 Any form of signal processing for which the input is an image





Gaussian filter



median filter



Wiener filter



### **Image Arithmetic**

| imabsdiff         | Absolute difference of two images                               |
|-------------------|-----------------------------------------------------------------|
| imadd             | Add two images or add constant to image                         |
| imapplymatrix     | Linear combination of color channels                            |
| imcomplement      | Complement image                                                |
| <u>imdivide</u>   | Divide one image into another or divide image by constant       |
| imlincomb         | Linear combination of images                                    |
| <u>immultiply</u> | Multiply two images or multiply image by constant               |
| <u>imsubtract</u> | Subtract one image from another or subtract constant from image |

Y.-F. Kuo

```
I=imread('rice.png');
subplot(1,2,1); imshow(I);
J=immultiply(I, 1.5);
subplot(1,2,2); imshow(J);
```



How to reduce the brightness of the image?

#### Image Addition: imadd()









#### Practice

• Adjust the "brightness" and "contrast" of rice.png and display it on the screen

### Image Histogram: imhist()

#### imhist(I)





### Practice

 Plot the histograms of the images before and after the "brightness" and "contrast" adjustment for rice.png

### Histogram Equalization: histeq()

Enhances the contrast of the image

```
I = imread('pout.tif'); I2 = histeq(I);
subplot(1,4,1); imhist(I);
subplot(1,4,2); imshow(I);
subplot(1,4,3); imshow(I2);
subplot(1,4,4); imhist(I2);
```



### Practice

• Write your own equalization function, try it on pout.tif, and display it on the screen

### **Geometric Transformation**

 Moving the coordinates (Not the gray-levels) of the pixels in an image

Y.-F. Kuo



#### Geometric Transformation Matrices (2D)

Y.-F. Kuo

| Transform                                     | Example    | Transformation matrix                                                                                                                               |
|-----------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Translation                                   |            | $\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x\\0 & 1 & t_y\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$ |
| Scale<br>imresize()                           |            | $\begin{bmatrix} s_{\chi} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                      |
| Shear                                         |            | $\begin{bmatrix} 1 & h_x & 0 \\ h_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                             |
| Rotation with θ<br>(clock-wise)<br>imrotate() | $\Diamond$ | $\begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$                                              |

http://www.mathworks.com/help/images/performing-general-2-d-spatial-transformations.html

#### Image Rotation: imrotate()

```
I = imread('rice.png'); subplot(1,2,1);
imshow(I); J = imrotate(I, 35, 'bilinear');
subplot(1,2,2); imshow(J);
size(I)
size(J)
```





### **Image Rotation**

• In two dimensions, rotation of a point (x, y) for an angle  $\theta$  "counter-clockwise" can be written as:



### Write Image: imwrite()

- Format supported: 'bmp', 'gif', 'hdf', 'jpg', 'jpeg', 'jp2', 'jpx', 'pcx', 'pnm', 'ppm', 'ras', 'tif', 'tiff', 'xwd'
- Example:

imwrite(I, 'pout2.png');

### End of Class

